Growing the Digital Repository of Mathematical Formulae with Generic LATEX Sources

Howard Cohl*, Moritz Schubotz\(\xi\), Marje McClain*, Bonita Saunders*, Alex Danoff\(\tau\), Jimmy Li\(\xi\), Jake Migdall\(\xi\)\(\xi\), Amber Liu\(\xi\)\(\xi\), Cherry Zou\(\xi\)\(\xi\), Azeem Mohammed\(\xi\)\(\xi\), Shraeya Madhu\(\xi\)\(\xi\)

*Applied and Computational Mathematics Division, NIST, Gaithersburg, Maryland, U.S.A. §Database Systems and Information Management Group, Technische Universität Berlin, Germany

> †Thomas S. Wootton High School, Rockville, MD ‡ Richard Montgomery High School, Rockville, MD §§Poolesville High School, Poolesville, MD

CICM 2015 Project

July 17, 2015

Table of contents

- 1 History
- 2 Goals
- 3 Current implementation
- 4 Project stages
- 5 Generic LATEX sources and the KLS dataset
- 6 Further questions and ongoing projects

Collecting information on special functions

- 1964: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
 - Milton Abramowitz and Irene Stegun
 - 1064 pages (book)
 - definitions, approximations, identities, plots and tables
- 2010: Digital Library of Mathematical Functions
 - NIST Handbook of Mathematical Functions as successor of A&S
 - F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors.
 - 968 pages (printed version), HTML version
 - Links, MathSearch, info boxes
- 2013: Digital Repository of Mathematical Formulae
 - Context-free full semantic information regarding individual formula
 - Additional Sources
 - Community interaction and collaboration

DRMF Goals

The NIST Digital Repository of Mathematical Formulae (DRMF) is designed for a mathematically literate audience and should:

- facilitate interaction among a community of mathematicians and scientists interested in compendia formulae data for orthogonal polynomials and special functions;
- **2** be **expandable**, allowing the input of new formulae from the literature;
- represent the context-free full semantic information concerning individual formulas;
- 4 have a user friendly, consistent, and hyperlinkable viewpoint and authoring **perspective**;
- 5 contain easily searchable mathematics; and
- **16** take advantage of modern **MathML** tools for easy to read, scalably rendered content driven mathematics.

(NIST, TU-Berlin) DRMF July 17, 2015 4 / 23

Current DRMF Implementation

Seeding

Display

- MediaWiki with Math and MathSearch extension
 - Table of contents pages
 - Lists of formulas pages
 - Formula home pages
 - Definition pages for DRMF macros

First three DRMF project stages

	Stage 1	Stage 2	Stage 3
Started in	2013	2014	2015
Dataset	DLMF, semantic L ^A T _E X	KLS, plain L ^A T _E X	eCF: Mathematica BMP: book images
Semantic enrichment	identify constraints, substitutions, notes, names, proofs,	add new semantic macros	image recognition macro suggestion
Technologies	manual review, rule-based approaches	improved rules	natural language processing and machine learning
Number of formula home pages	500	1500	5000
Human time per formula homepage	10 minutes	5 minutes	1 minute
Test corpora contribution	gold standard for constraint and proof detection	gold standard for macro replacement	evaluation metrics

(NIST, TU-Berlin) DRMF July 17, 2015

Macro replacement

Semantic LATEX macros – Some Examples

Some Examples

- Special Functions and Orthogonal polynomials:
 - Trigonometric sine function
 - Euler gamma function
 - Jacobi polynomial
 - little *q*-Laguerre/Wall polynomial
- Rendered as:
 - \blacksquare sin z, $\Gamma(z)$, $P_n^{(\alpha,\beta)}(x)$, and $p_n(x;a|q)$.
- LATEX presentations given by
 - \sin z, \Gamma(z), $P_n^{(\alpha,\beta)}(x)$, $p_n(x;a|q)$.
- Semantic LATEX representations
 - \sin@0{z}
 \EulerGamma@{z}
 \Jacobi{\alpha}{\beta}{n}@{x}
 \littleqLaguerre{n}@{x}{a}{q}

Semantic macro breakdown

685 semantic LATEX macros

- 395 macros for real and complex valued functions
- 185 macros for polynomials (orthogonal and whatnot)
- 29 macros for integer valued functions
- 24 macros for various operators
- 16 macros for encapsulating semantic information
- 14 macros for quantifiers, set operators and symbols
- 9 macros for sets of numbers
- 5 macros for constants
- 5 macros for linear algebra
- 3 macros for distributions

Semantic LATEX macro properties: lengths between 1 and 26 characters (median length is 8 characters), individual names capitalized, abbreviations utilized, macro names correspond with object names, Greek numerals

(NIST, TU-Berlin) DRMF July 17, 2015 9 / 23

Semantic LATEX Macro Glossary – csv format

For each macro we store:

- Example Macro calling sequence
- Name of object described by macro
- Object description
- Demonstration rendering of called semantic macros
- Description identifier
- Brief summary and description of calling options
- Link to url giving precise definition

Glossary.csv used in generation of symbols lists within Wikitext and for statistical purposes.

Macro Replacements for Generic LATEX Source Datasets

For the 3 chapters of KLS as well as the KLSadd LATEX source, **89** semantic macros were replaced a total of **3308** times, currently represented by **456** lines of regular expression code. Currently the six most common replacements are:

- *q*-Pochhammer symbol replaced **659** times
- Euler gamma function replaced 266 times
- *q*-hypergeometric function replaced **237** times
- Pochhammer symbol replaced 205 times
- Racah polynomial replaced 117 times
- cosine function replaced 82 times

Example of complexity of the problem - KLSadd dataset

- After processing of the LATEXinput, only formulas remain.
- The only metadata currently extracted (in an automated fashion) for this source are constraint and substitution annotations.
- Much more formula metadata should be extracted from the text (e.g., bibliographic metadata, references to KLS formulae, errata information, formula comments and notes, symmetries in parameters, sketches of proofs, etc.).
- Currently the macro replaced source for Koornwinder's KLS addendum is inserted at the end of each chapter (or section).
- Addendum formulae should actually be exhaustively inserted at their corresponding precise locations within the original KLS LATEX source.
- There is a need to insert markers within the KLSadd source which identify and orient correct location insertions within the KLS dataset.

(NIST, TU-Berlin) DRMF July 17, 2015 12 / 23

Semantic LaTeX Macro Functionality in the MediaWiki Math Extension through LaTexml

- XSEDE LATEXMI server
- Provides automatic line breaking for long formulas
- Nicely displayed mathematics
- Presentation and Content MathML
- Processes a customized set of 685 semantic LATEX macros
 - generates MathML presentation and content
 - currently 685 DLMF and DRMF LATEX macros
 - 529 DLMF macros
 - 156 DRMF macros

DRMF Zeta and Related Functions Page

DRMF Zeta and Related Functions Page (cont.)

$$\zeta(g) = \frac{(2\pi)^{7}e^{-r\cdot(r/2)}}{2(s-1)\Gamma(\frac{r}{2}s+1)} \prod_{g} \left(1-\frac{s}{\rho}\right) e^{s/\rho}$$

$$\text{Constraint(s): product over zeros } \rho \text{ of } \zeta \text{ with } \Re \rho > 0$$

$$\text{Reflection Formulas}$$

$$\zeta(1-s) = 2(2\pi)^{-r\cos\left(\frac{r}{2}\pi s\right)} \Gamma(s) \zeta(s)$$

$$\text{Constraint(s): } s \neq 0, 1$$

$$\zeta(s) = 2(2\pi)^{-r\sin\left(\frac{r}{2}\pi s\right)} \Gamma(1-s) \zeta(1-s)$$

$$\zeta(s) = (2(2\pi)^{-r\sin\left(\frac{r}{2}\pi s\right)} \Gamma(1-s) \zeta(1-s)$$

$$\zeta(s) = (1-s) \zeta(s) = \frac{1}{2}(s-1) \Gamma(\frac{r}{2}s) \pi^{-r/2} \zeta(s)$$

$$\zeta(s) = \frac{1}{2$$

(NIST, TU-Berlin) DRMF July 17, 2015 15 / 23

DLMF macros provide semantic content in formulas

- DLMF OPSF Macros via LATEXML-server
 - 546 semantic DLMF LATEX OPSE macros
 - additional 49 semantic DRMF LATEX macros
- Objects: \sum,\int,\deriv{f}{x},\qderiv[n]{q}@{z}
- Constants: \expe,\iunit,\cpi,\EulerConstant
- Special Functions and Orthogonal Polynomials

```
\Gamma(z) \qquad \text{EulerGamma@{z}} \qquad \text{http://dlmf.nist.gov/5.30\#E1} \\ J_{\nu}(z) \qquad \text{BesselJ{nu}@{z}} \qquad \text{http://dlmf.nist.gov/10.2\#E2} \\ Q_{\nu}^{\mu}(z) \qquad \text{LegendreQ[\mu]{\nu}@{z}:} \qquad \text{http://dlmf.nist.gov/14.3\#E7} \\ P_{n}^{(\alpha,\beta)}(x) \qquad \text{JacobiP{\alpha}{\beta}{n}@{x}} \qquad \text{http://dlmf.nist.gov/18.3\#T1.t1.r3} \\ \end{array}
```

(NIST, TU-Berlin) DRMF July 17, 2015 16 / 23

Formula Home Pages

- Whereas Wikipedia and other web authoring tools manifest notions or descriptions as first class objects, the DRMF does that with mathematical formulae.
- DRMF provides for each formula, a formula home page:
 - Rendered description of the formula (required);
 - Constraints the formula must obey;
 - **3 Substitutions** required to understand formula;
 - 4 Bibliographic citation (required);
 - Open section for **proofs** (required) *DLMF*;
 - **6** List of symbols and links to definitions (required) *DLMF macros*;
 - Open section for **notes** connections between formulas; and
 - 8 Open section for **external links** *computer generated proofs*;

(NIST, TU-Berlin) DRMF July 17, 2015 17 / 23

Sample formula home page

Further questions

- How does one facilitate effective community interaction & contribution with such a resource?
 - implement a high degree of computer verification of community input
 - ensure a degree of moderation in the Wiki
- Can one build a piece of intelligent software which is able to
 - scan in books:
 - produce LATEX source;
 - replace commands for functions in the source with semantic macros;
 - extract data from the text (such as constraints)
 - associate data with relevant formulae and removes text;
 - produce Wikitext;
 - and upload Wikitext to a publicly accessible website?
- How does one search the resulting mathematical database?

(NIST, TU-Berlin) DRMF July 17, 2015 19 / 23

Ongoing projects to investigate the above questions

- Macro replacements from well-constructed LATEX source
- Extraction of mathematical data from text (keywords)
- Wikitext generation
- Porting/building a mathematical search engine in MediaWiki
- Output of formula data from right-clickable menus in a variety of formats so that formulas can be used and also verified
 - LATEX expanded
 - LATEX semantic
 - presentation MathML
 - content MathML
 - Mathematica
 - Maple
 - Sage

Past/Present/Related development team members

- Moritz Schubotz (TU-Berlin): MediaWiki Math
- Past/Present High School Students:
 - Jake Migdall : MathJax menu
 - Alex Danoff : seeding/macro replacement
 - Amber Liu: MathJax menu customization
 - Cherry Zou: seeding/macro replacement
 - Jimmy Li: mathematical search
 - (Azeem Mohammed : LATEX to Wikitext)
 - (Shraeya Madhu : Seeding Project)
- [Bruce Miller (NIST) : (DLMF macros/Search)]
- [Abdou Youssef (NIST) : (DLMF Math Search)]

Ongoing project: Content MathML

- Presentation MathML → Content MathML
 - LETEXML generates presentation MathML and Content MathML (DLMF macros) [symbol interaction]
- How can we improve the Content MathML?
- Resolve **ambiguities** associated with :
 - Superscipts/subscripts, e.g., x^0
 - Sums/products/integrals/limits, e.g., $\sum_{n=0}^{\infty} f(n)$
 - Multiplication/function application, e.g., f(a + b)
 - **Prime** notation (variable vs. derivative), e.g., f'(a+b)
- Content Dictionaries w/links to macros and mathematical definitions (e.g., DLMF)
- Phrase Books translate between different syntaxes
- Example: LATEX ↔ Mathematica ↔ Wikitext (while maintaining Content MathML)

... this can not be real ...

- There is a demo
- http://drmf.wmflabs.org